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Double Sine-Gordon ratchet induced by excitation of an internal mode
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In a recent papdPhys. Rev. E69, 056612(2004) ] we showed the symmetry analysis of Flathal.[Phys.
Rev. Lett. 88, 184101(2002] which predicted the appearance of directed energy current in homogeneously
spatially extended systems described by nonlinear field equations coupled to a heat bath in the presence of a
correct choice for the time dependence of an external ac fi#t)l, was due to the excitation of an internal
mode. Flactet al. applied their analysis to the sine-Gord@G) equation and verified the symmetry breaking
numerically. In the SG case we showed the internal mode coupled to the center of the mass “dtjalthet
caused the symmetry breaking wla&) the slope of the kink. We also found that the phonon dressing of the
SG kink by the ac drivery(t), was necessary for the occurrence of a directed energy current in the SG
equation. We show in the case of the double sine-Gof@®G) equation that the excitation of the internal
mode,R(t) (whereR(t) is the separation of the two subkinks that make up the DSG splitombined with the
phonon dressing of the DSG soliton also causes a directed energy current.
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I. INTRODUCTION X(t) andR(t) and for the generation of directed energy cur-

rents in Sec. lll. In Sec. IV we discuss our results.
Recently Flachet al. [1-3] showed that an external ac

field E(t) with the correct properties would cause the appear-

ance of persistent directed energy currents in homogeneous Il. DERIVATION OF CV EQUATIONS OF MOTION

spatially extended systems described by nonlinear field equa- ) o i i

tions such as nonlinear Klein-Gordon systems with nonzero We outline the derivation of the equations of motion for

topological charge connected to a heat bath. The exampF@e collective variableX(t) and R(t) which are derived in

they chose was the sine-Gord68G) equation which they detail in Refs.[5,6] for the DSG equation driven by an ac

solved numerically. They also showed the persistence of didriver. The DSG equation in the presence of an ac driver and

rected energy currents in the Hamiltonian limit exposed to aglamping due to a heat bath is

fields but decoupled from the heat bath. The authors of Ref.

[1] suggested that the origin of the observed rectification in _ + N(P) _ _ Next +p(xt) 1)

the underdamped limit was due to the nonadiabatic excita- Pt Pox b I B+ mx,

tion of internal kink modes and their interaction with the

translational kink motion. where B¢, represents the damping due to the heat bath and
In Ref. [4] we proved that the argument of Flaeh al.  the Gaussian white noisg is characterized by the standard

[1-3] is correct for the SG equation using a rigorous collec-correlation function( 7(x,t) 7(x’,t'))=28y 18(x-x") 8(t-t'),

tive variable (CV) theory for the nonlinear Klein-Gordon wherey is the inverse temperature:

equations derived in Ref$5,6]. We showed explicitly for

the ac driver SG equation that the collective variakl(¢) V(o) = - 427/l g)secB R

and the slopd’(t) become time dependent and dynamically

coupled to each other due to the phonon dressing caused by x| (cos¢ - Dsint?t R - (1 n cos?ﬂ (2)
the ac field. As a consequence of the couplingX@f) and

I'(t) caused by the phonon dressing, the ac driver SG equa-
tion has a directed energy current—i.e., a time inversiorfd
symmetry breaking.

In the double sine-GordofDSG) equation there is a sec- Vext = (€1 COSwt + €, co§ 20t + 0])p = f1(1)p.  (3)
ond collective variabldR(t), which represents the separation ) ) _
of the two SG kinks that make up the DSG soliton which canlNOte thatf(t) is not shift symmetric as long as boé and
serve as the internal kink mode that takes part in the syme€z aré nonzero. The parametessand e, represent the mag-
metry breaking. In this paper we take the slope to be a connitude of the ac driver. We introduce the collective variables
stant and prove that the CR(t) combined with the phonon X(t) andR(t) by means of the ansatz
dressing causes rectification of the energy current in the
DSG. ¢=o((2mllg)[x = XV ]R(1) + x((27/lg)[x = X() ], R(1)),

In Sec. Il we derive the coupled equations of motion for (4)
X(t) andR(t) including the terms due to the dressing of the
kink by phonons. We present our results for the solution ofwhereo is the solution of the unperturbed DSG which is
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Xpsc = Xsal[X— X(1)] + R(D} — xsa{R(t) — [x - X(D) ]}

]
ta) = (41m)f(t)(sech{[x - X(t)] + R(t)} - secR{[x - X(1)]
V()
-R1)}). (8)
Since we increased the number of degrees of freedom by
L] 2—namely, X(t) and R(t)—it is necessary thaipsg Satisfy

four constraints: namely,

’ (b)
Cx= f opsdy,Rix(y,t)dy=0,

1d where opggy, R) = dopsely,R)/dy and

N (c) Cr= f or(y,Rx(y,)dy=0,
where og(y,R)=dopsa(y,R)/dR and the same two con-
04 straints withy replaced byil, the momenta conjugate

The constraints are used in obtaining the final equations of
(d) motion for R and X. The details are given in Reff6].

We obtain the equations of motion f& by multiplying
Eq. (1) by do/ 9X and integrating oveX. The result given in
Eq. (3.17 of Ref.[6] is

1«

04

- d . . ..
S SIMLRI(L~5,)X] = = X(o |y 1oty + XR(odx)

FIG. 1. (a) The DSG potential fofR =1.25, (b) the solution to
the unperturbed DSG equation, H§), for X(0)=0 andR(0)=R, , _ N
(c) the Goldstone modea/3X with R(0)=R andX(0)=0, and(d) iy | o'ydy=BMxX, (9
dol dR, the approximate small oscillation function wifR(0)=R
and X(0)=0. Note that in the exact solution of the DSG with pa- Where y=x-X(t) and where the dot productA|B)
rameterR, the distance between the subkinks that make up the= [Z, A(y,R)B(y,R)dy. The explicit integrals of the various
DSG is 2R. Figure from Ref[5]. dot products in Eq(9) are

a((2mllp)[x = X()],R(1)) = osa((271o)[x = X(t)] + R(t)) Mx(R) = (o'|o") = 8{1 + ] : (10)

= s6(R(t) = (27/lg)[x = X(B)])

®) (o’'|ax’Iaty = 1—6ff du sechu sech[2R - uJtanf2R - u],
and ogg(X)=4 tart{exp(x)] is the solution of the single SG Tl

equation. For convenience we reproduce, as our Fig. 1, Fig. (11
(1) of Ref.[5] for V(¢), o, doldX, anddo/JR. For the re-

mainder of this paper we set the dimensionless parameter L _16 (7

(27/1p) equal to 1. In Ref[4] we derived the dressing of the (o'[x) = ;ff_x du sechu

SG caused by;(t). The result is

sinh R

Xtanhu secl[2R - ultanf2R- u], (12)

4
x) = —f(t)sech x, 6 1 -1 i\
Xsel¥) = 210 © b= (MY X0 =- MK [y).  (13)
where Thus,
(1) = (e/2)cosot] O+ — 1 XMX@:W’WX’/&OX- (14)
' F+(1-0)f F+(l+w)? A
1= 20 When we substitute Eq13) into Eg. (9) we obtain
+ (&/2)coq 2wt + 6) m d
— 2w : . : . :
d—[Mx(R)X] = Py = IX{= 2o’ [x")(f/f) + R(owrlx")} = BPx
L 1+20 . t
B+ (1+2w)? ] ™ + 47f, (15)
The dressingypsg to first order ine; ande, is where the momentum conjugatexXads Px= MX(R)X. In our
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units the energy currerd(t) is equal toPx(t) where

) = f T T M RX =Py, (16)

I )

In the same manner we obtain the equations of motion for

R ie., we multiply Eq.(1) by do/JdR and integrate ovex.
The result given in Eq(3.19 of Ref.[6] is

d ) .
—[Mg(1-br)R] = - R,
ML -baR]=- =2 "

(17)
where
Nt — (R + W greséR) _ }RQ(?MR, (18)
IR JR IR 2 R

Mg(R)=8[1-2R/sinh R], andbg= (Mg) X orgl x) so that

. d :
- Ra(M rbr) = — R(orgdx/dt). (19

v=(R) andvy.es{R) are defined in Eqg21) and(22), respec-
tively. When we substitute Eq19) into Eq. (17) we obtain

d d
—[Mg(RIR] = gt RRD

dt

N,

=- Tgf + AorddxI R~ BMgR, (20)

where the momentum conjugate Ras PR:MRR and where

RI=8 1+ 2R< 1 . cothR
vr(R) = anit R sinPR  costR
tanif R coshR) o1
~ 2sinkR 29

Figure 2 showsz(R) as a function ofR for R=0.24. The
force onR(t) due to the phonon dressing is

70 R 16 *

WarestR) =——f f du secB(2R- w)tanh2R - w)
R T w

X sechu tanhu - f du secR(2R - w)

X tanh(2R — w)sechu tanh,u} . (22

Note thatdvqes{R)/ IR vanishes aR=R as doew(R).
The terms(a’ |x') and{(a'g|x") in Eq. (15 and the terms
MW ares§R) 1 IR and(ogg| x) are first order ine; ande,. Since
we have solved foiy to only first order ine; and e, it is
sufficient to evaluate these four terms wift) - R i, where
Rmin is the minimum ofv ¢ (R) which occurs aR="R. In this
paper we takeRin=2.4. At R=R the force dvges{R)/ IR
=0.

Consequently we expanéy.s{R)/JR to first order in
R-"R which yields
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FIG. 2. The effective nonlinear potentia), for R =0.24.

&Udreng 1

P (R 2. 4)f du{2 sech(4.8 - )

(23
The values of the dot products evaluatedRatR =2.4 are
(a|ax'1)=0.025,  (o'g|x)=0.024%,  (owgldx/at)
=0.05, and dvgesfR)/ IR=-0.11F(R-2.4).
Finally, the coupled equations of motion f&randR are

- 3 sechi(4.8 —u)}sechu tanhp.

d } .
d_t[MX(R)X] + BMy(R)X - 47fy

f :
=f {— 0.1275f- + 0.1231-'2} ,

(24)
d : - vg(R)
dt[MR(R)R] * BMR(RIR+ — o=
1,0Mg ] B f.
=R f{ 0.115R 2.4)+o.5097?R}.
(25

It is also useful to express EqR4) and(25) in terms of
the momentum

dpP, f P
Xt BPy — 4mrf, = fPy(My)™1) 0.1275; + 0.1232-% (,
dt f Mg

(26)
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FIG. 3. This figure demonstrates symmetry breaking—i.e., the FlG' 4. (Px(t)) as a function off fpr ‘”:0'05'61262:0'03_f0r
nonvanishing of Py(t)) as a function o for various values of the ~ Various values oB shows a monotonic decrease of the amplitude of

parameterso, €, and 8. Solid curve:w=0.05, ;= €,=0.03, and3 (P(t)) as the damping3 increases. Solid curveg3=0.02. Dashed
=0 (the curve is multiplied by 0.02 Dashed curvew=0.15, € curve: 5=0.05. Dotted curve=0.12.

=0.3, =€/13, and$=0.2. Dotted curvew=0.125,6,=0.16, ;

=¢ /42, and 8=0.15. Dash-dotted curven=0.05, €;=¢,=0.05, time average of the energy curredft), which is equal to the

and 8=0.12. time average ofPy(t) because, from Eq16), J(t)=Px(t).
The definition of the time average is{Px(t))
dPs P2 Mg dvg(R) =lim_..(1/2T)[T;dt'P(t’). In Figs. 3 and 4 we present the
at +BPr— M2 4R IR results for(Py(t)) for a range of values ob, €, €, and 8
R

_ which clearly show the persistent energy current as a func-
f Pg tion of @ including the Hamiltonian limit whergg=0. At
=f]0.115R-2.4 + 0.5097% 1 - (27)  =0+nw the ac driver is shift symmetric, so there is no sym-
R metry breaking for3=0 and forB+ 0 the shift symmetry is
Note that the right-hand sides of the above equations arenly approximately satisfied becoming exactzs 0. At all
proportional to the phonon dressing—i.&., other # the ac driver is not shift symmetric and we have
Before proceeding to the results of simulations in the nexeymmetry breaking of the energy current for the DSG just as
section we make a few observations about the coupled equase did in Ref.[4] for the SG. In Figs. 5 and 6 we have

tions of motion forX andR. The equation of motion foX  typical examples of computer solutions for the CR&) and
has a steady-state solution because the ac driwéf(9 is  Px(t) for various values of the parametess 3, €;, ande,. In

able to balance the damping due to the resengdigX. The ~ Poth figures we see th&(t) behaves as the solution of the
absence of the phonon dressigg-i.e., f in Eq. (26) for equation of motion for a point particle moving in a single

. minimum asymmetric potential well, driven by a two-
R—has the consequence ttit) would not see the ac drl_ver frequency driver. The momentum conjugateXia@), behaves

at all and the reservoir damping due to the reser@zR  |ike the momentum of a damped point particle weakly
would causeR(t) to decay to the minimum afr(R) whichis  coupled toR and driven by a two-frequency ac driver.

at R="R and there would then be no time dependent internal

mode. Consequently there would be no persistent energy cur-

rent; i.e.,(Px(t)) would vanish. Equation&6) and(27) sat- IV. DISCUSSION

isfy time inversion symmetry whe=0 and#=0+nr.
fy y y o We chose the internal variablRt) to be the internal vari-

able for symmetry breaking in the DSG. We equally well

could have chosen the internal variable for symmetry break-
In this section we present the results of computer soluing to bel'(t). EitherR(t) or I'(t) or both will cause symme-

tions of Eq.(26) for Py(t), of Eq. (27) for R(t), and for the try breaking in the DSG, whereas in the SG case the only

Ill. RESULTS OF SIMULATIONS

R(t) Px(t)
1.96 30
1.955 20 FIG. 5. The energy current
10 Py(t) and the distance between the
1.95 | ¢ subkinks of the DSGR(t), for the
0 00 parameters8=0.1, e;=€,=0.2, 6
1 9as -10 =1.61-m, andw=0.12.
-20
250 300 350 400 450 500 t -30
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1.9sR(t) soPX (t) FIG. 6. Px(t) andR(t) for the
parameterg3=0.2, €,=0.5, e,=1,

1.97 40 6=0, and w=0.15. Both curves

1 96 20 show the effect of two driving fre-

' i quencies. The time average of

1.95 b ot P(t) is nonzero andR(t) has a
two-frequency nonlinear oscilla-

1.4 'zov U v V V V v V V tion about the minimum of the

t -40 asymmetric potential well.

internal variable possible iB(t). In all cases there can be no inversion symmetry is not broken if=0. We showed in Ref.
symmetry breaking unless the phonon dressing caused by tfié] that if the dressingy vanished theqPy(t))=0. Thus the
ac driver is included in the equations of motion. This can benecessary condition for a directed energy in both the SG and
seen clearly in Eq(24) where if y=0 (i.e., f=0) the equation DSG equations is that the phonon dressjtt be nonzero.

of motion for the energy current is Recently, in Ref[7], a very different generalized double
sine-Gordon that has a spatially asymmetric potential, which
dﬂ< + BPy = 4mf (29) is driven by a single-frequency ac driver, was used to obtain
dt X~ o spatial ratchet behavior. Their spatial symmetry breaking

S mechanism with a single-frequency ac driver is completely
The infinite time average of the energy curren{®(t))  different than our spatially symmetric DSG with a two-
=0 and thus there is no directed energy current; i.e., timgrequency ac driver which violates time shift symmetry.
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