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In a recent paperfPhys. Rev. E69, 056612s2004dg we showed the symmetry analysis of Flachet al. fPhys.
Rev. Lett. 88, 184101s2002dg which predicted the appearance of directed energy current in homogeneously
spatially extended systems described by nonlinear field equations coupled to a heat bath in the presence of a
correct choice for the time dependence of an external ac field,Estd, was due to the excitation of an internal
mode. Flachet al. applied their analysis to the sine-GordonsSGd equation and verified the symmetry breaking
numerically. In the SG case we showed the internal mode coupled to the center of the mass variable,Xstd, that
caused the symmetry breaking wasGstd the slope of the kink. We also found that the phonon dressing of the
SG kink by the ac driver,xstd, was necessary for the occurrence of a directed energy current in the SG
equation. We show in the case of the double sine-GordonsDSGd equation that the excitation of the internal
mode,Rstd swhereRstd is the separation of the two subkinks that make up the DSG solitond, combined with the
phonon dressing of the DSG soliton also causes a directed energy current.
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I. INTRODUCTION

Recently Flachet al. f1–3g showed that an external ac
field Estd with the correct properties would cause the appear-
ance of persistent directed energy currents in homogeneous
spatially extended systems described by nonlinear field equa-
tions such as nonlinear Klein-Gordon systems with nonzero
topological charge connected to a heat bath. The example
they chose was the sine-GordonsSGd equation which they
solved numerically. They also showed the persistence of di-
rected energy currents in the Hamiltonian limit exposed to ac
fields but decoupled from the heat bath. The authors of Ref.
f1g suggested that the origin of the observed rectification in
the underdamped limit was due to the nonadiabatic excita-
tion of internal kink modes and their interaction with the
translational kink motion.

In Ref. f4g we proved that the argument of Flachet al.
f1–3g is correct for the SG equation using a rigorous collec-
tive variable sCVd theory for the nonlinear Klein-Gordon
equations derived in Refs.f5,6g. We showed explicitly for
the ac driver SG equation that the collective variableXstd
and the slopeGstd become time dependent and dynamically
coupled to each other due to the phonon dressing caused by
the ac field. As a consequence of the coupling ofXstd and
Gstd caused by the phonon dressing, the ac driver SG equa-
tion has a directed energy current—i.e., a time inversion
symmetry breaking.

In the double sine-GordonsDSGd equation there is a sec-
ond collective variableRstd, which represents the separation
of the two SG kinks that make up the DSG soliton which can
serve as the internal kink mode that takes part in the sym-
metry breaking. In this paper we take the slope to be a con-
stant and prove that the CVRstd combined with the phonon
dressing causes rectification of the energy current in the
DSG.

In Sec. II we derive the coupled equations of motion for
Xstd andRstd including the terms due to the dressing of the
kink by phonons. We present our results for the solution of

Xstd andRstd and for the generation of directed energy cur-
rents in Sec. III. In Sec. IV we discuss our results.

II. DERIVATION OF CV EQUATIONS OF MOTION

We outline the derivation of the equations of motion for
the collective variablesXstd and Rstd which are derived in
detail in Refs.f5,6g for the DSG equation driven by an ac
driver. The DSG equation in the presence of an ac driver and
damping due to a heat bath is

f,tt − f,xx +
]Vsfd

]f
= −

]Vext

]f
− bf,t + hsx,td, s1d

wherebf,t represents the damping due to the heat bath and
the Gaussian white noiseh is characterized by the standard
correlation functionkhsx,tdhsx8 ,t8dl=2bg−1dsx−x8ddst− t8d,
whereg is the inverse temperature:

Vsfd ; − 4s2p/l0dsech2 R

3Fscosf − 1dsinh2 R − S1 + cos
f

2
DG s2d

and

Vext ; se1 cosvt + e2 cosf2vt + ugdf ; f1stdf. s3d

Note thatf1std is not shift symmetric as long as bothe1 and
e2 are nonzero. The parameterse1 ande2 represent the mag-
nitude of the ac driver. We introduce the collective variables
Xstd andRstd by means of the ansatz

f = s„s2p/l0dfx − Xstdg,Rstd… + x„s2p/l0dfx − Xstdg,Rstd…,
s4d

wheres is the solution of the unperturbed DSG which is
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s„s2p/l0dfx − Xstdg,Rstd… ; sSG„s2p/l0dfx − Xstdg + Rstd…

− sSG„Rstd − s2p/l0dfx − Xstdg…
s5d

andsSGsxd=4 tan−1fexpsxdg is the solution of the single SG
equation. For convenience we reproduce, as our Fig. 1, Fig.
s1d of Ref. f5g for Vsfd, s, ]s /]X, and]s /]R. For the re-
mainder of this paper we set the dimensionless parameter
s2p / l0d equal to 1. In Ref.f4g we derived the dressing of the
SG caused byf1std. The result is

xSGsxd =
4

p
fstdsech2 x, s6d

where

fstd ; se1/2dcosvtH 1 − v

b2 + s1 − vd2 +
1 + v

b2 + s1 + vd2J
+ se2/2dcoss2vt + udH 1 − 2v

b2 + s1 − 2vd2

+
1 + 2v

b2 + s1 + 2vd2J . s7d

The dressingxDSG to first order ine1 ande2 is

xDSG= xSGhfx − Xstdg + Rstdj − xSGhRstd − fx − Xstdgj

= s4/pdfstd„sech2hfx − Xstdg + Rstdj − sech2hfx − Xstdg

− Rstdj…. s8d

Since we increased the number of degrees of freedom by
2—namely,Xstd and Rstd—it is necessary thatxDSG satisfy
four constraints: namely,

CX ;E sDSG8 sy,Rdxsy,tddy= 0,

wheresDSG8 sy,Rd;]sDSGsy,Rd /]y and

CR ;E sRsy,Rdxsy,tddy= 0,

where sRsy,Rd;]sDSGsy,Rd /]R and the same two con-
straints withx replaced byP, the momenta conjugate tox.
The constraints are used in obtaining the final equations of

motion for R̈ and Ẍ. The details are given in Ref.f6g.
We obtain the equations of motion forẌ by multiplying

Eq. s1d by ]s /]X and integrating overX. The result given in
Eq. s3.17d of Ref. f6g is

d

dt
fMXsRds1 − bXdẊg = − Ẋks8u]x8/]tl + ẊṘksR8 ux8l

+ f1E s8syddy− bMXẊ, s9d

where y;x−Xstd and where the dot productkAuBl
;e−`

` Asy,RdBsy,Rddy. The explicit integrals of the various
dot products in Eq.s9d are

MXsRd ; ks8us8l = 8F1 +
2R

sinh 2R
G , s10d

ks8u]x8/]tl =
16

p
ḟE

−`

`

dm sechm sech2f2R− mgtanhf2R− mg,

s11d

ks8ux8l =
16

p
fE

−`

`

dm sechm

3tanhm sech2f2R− mgtanhf2R− mg, s12d

bX ; sMXd−1ks9uxl = − MX
−1ks8ux8l. s13d

Thus,

ẊMX
]bX

]t
= ks8u]x8/]tlẊ. s14d

When we substitute Eq.s13d into Eq. s9d we obtain

d

dt
fMXsRdẊg ; ṖX = fẊh− 2ks8ux8ls ḟ/fd + ṘksRux8lj − bPX

+ 4pf1, s15d

where the momentum conjugate toX is PX;MXsRdẊ. In our

FIG. 1. sad The DSG potential forRù1.25, sbd the solution to
the unperturbed DSG equation, Eq.s5d, for Xs0d=0 andRs0d=R,
scd the Goldstone mode]s /]X with Rs0d=R andXs0d=0, andsdd
]s /]R, the approximate small oscillation function withRs0d=R
and Xs0d=0. Note that in the exact solution of the DSG with pa-
rameterR, the distance between the subkinks that make up the
DSG is 2R. Figure from Ref.f5g.

C. R. WILLIS AND M. FARZANEH PHYSICAL REVIEW E71, 016604s2005d

016604-2



units the energy currentJstd is equal toPXstd where

Jstd ; E
−`

`

dx
]s

]t

]s

]X
= MXsRdẊ ; PXstd. s16d

In the same manner we obtain the equations of motion for

R̈; i.e., we multiply Eq.s1d by ]s /]R and integrate overx.
The result given in Eq.s3.19d of Ref. f6g is

d

dt
fMRs1 − bRdṘg = −

]Veff

]R
+ 2ksRRu]x/]tlṘ− bMRṘ,

s17d

where

]Veff

]R
;

]vRsRd
]R

+
]vdresssRd

]R
−

1

2
Ṙ2]MR

]R
, s18d

MRsRd=8f1−2R/sinh 2Rg, andbR;sMRd−1ksRRuxl so that

− Ṙ
d

dt
sMRbRd = − ṘksRRu]x/]tl. s19d

vRsRd andvdresssRd are defined in Eqs.s21d ands22d, respec-
tively. When we substitute Eq.s19d into Eq. s17d we obtain

d

dt
fMRsRdṘg ;

d

dt
PRsR,td

= −
]Veff

]R
+ 2ksRRu]x/]tlṘ− bMRṘ, s20d

where the momentum conjugate toR is PR=MRṘ and where

vRsRd = 8F1 +
tanh2 R
tanh2 R

+ 2RS 1

sinh2 R
+

cothR

cosh2 R

−
tanh2 R coshR

2 sinh2 R
DG . s21d

Figure 2 showsvRsRd as a function ofR for R=0.24. The
force onRstd due to the phonon dressing is

]vdresssRd
]R

= −
16

p
fFE

−`

`

dm sech2s2R− mdtanhs2R− md

3 sechm tanhm −E
−`

`

dm sech2s2R − md

3 tanhs2R − mdsechm tanhmG . s22d

Note that]vdresssRd /]R vanishes atR=R as doesvRsRd.
The termsks8 ux8l and ks8Rux8l in Eq. s15d and the terms
]vdresssRd /]R and ksRRuxl are first order ine1 ande2. Since
we have solved forx to only first order ine1 and e2, it is
sufficient to evaluate these four terms withRstd−Rmin where
Rmin is the minimum ofvRsRd which occurs atR=R. In this
paper we takeRmin=2.4. At R=R the force]vdresssRd /]R
=0.

Consequently we expand]vdresssRd /]R to first order in
R−R which yields

]vdresssRd
]R

= f
16

p
sR− 2.4dE

−`

`

dmh2 sech2s4.8 −md

− 3 sech4s4.8 −mdjsechm tanhm. s23d

The values of the dot products evaluated atR=R=2.4 are

ks8 u]x8 /]tl=0.025ḟ, ks8Rux8l=0.0242f, ksRRu]x /]tl
=0.05ḟ, and]vdresssRd /]R=−0.115fsR−2.4d.

Finally, the coupled equations of motion forẌ and R̈ are

d

dt
fMXsRdẊg + bMXsRdẊ − 4pf1

= fH− 0.1275
ḟ

f
+ 0.1232ṘJ , s24d

d

dt
fMRsRdṘg + bMRsRdṘ+

]vRsRd
]R

=
1

2
Ṙ2]MR

]R
+ fH− 0.115sR− 2.4d + 0.5097

ḟ

f
ṘJ .

s25d

It is also useful to express Eqs.s24d and s25d in terms of
the momentum

dPX

dt
+ bPX − 4pf1 = fPXsMXd−1H0.1275

ḟ

f
+ 0.1232

PR

MR
J ,

s26d

FIG. 2. The effective nonlinear potentialvR for R=0.24.
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dPR

dt
+ bPR −

PR
2

2MR
2

]MR

]R
+

]vRsRd
]R

= fH0.115sR− 2.4d + 0.5097
ḟ

f

PR

MR
J . s27d

Note that the right-hand sides of the above equations are
proportional to the phonon dressing—i.e.,f.

Before proceeding to the results of simulations in the next
section we make a few observations about the coupled equa-

tions of motion forẌ and R̈. The equation of motion forẌ
has a steady-state solution because the ac driver 4pf1std is

able to balance the damping due to the reservoirbMXẊ. The
absence of the phonon dressingx—i.e., f in Eq. s26d for

R̈—has the consequence thatRstd would not see the ac driver

at all and the reservoir damping due to the reservoirbMRṘ
would causeRstd to decay to the minimum ofvRsRd which is
at R=R and there would then be no time dependent internal
mode. Consequently there would be no persistent energy cur-
rent; i.e.,kPXstdl would vanish. Equationss26d ands27d sat-
isfy time inversion symmetry whenb=0 andu=0±np.

III. RESULTS OF SIMULATIONS

In this section we present the results of computer solu-
tions of Eq.s26d for PXstd, of Eq. s27d for Rstd, and for the

time average of the energy current,Jstd, which is equal to the
time average ofPXstd because, from Eq.s16d, Jstd=PXstd.
The definition of the time average iskPXstdl
; limT→`s1/2Tde−T

T dt8PXst8d. In Figs. 3 and 4 we present the
results forkPXstdl for a range of values ofv, e1, e2, andb
which clearly show the persistent energy current as a func-
tion of u including the Hamiltonian limit whereb=0. At u
=0±np the ac driver is shift symmetric, so there is no sym-
metry breaking forb=0 and forbÞ0 the shift symmetry is
only approximately satisfied becoming exact asb→0. At all
other u the ac driver is not shift symmetric and we have
symmetry breaking of the energy current for the DSG just as
we did in Ref. f4g for the SG. In Figs. 5 and 6 we have
typical examples of computer solutions for the CV’sRstd and
PXstd for various values of the parametersv, b, e1, ande2. In
both figures we see thatRstd behaves as the solution of the
equation of motion for a point particle moving in a single
minimum asymmetric potential well, driven by a two-
frequency driver. The momentum conjugate toXstd, behaves
like the momentum of a damped point particle weakly
coupled toR and driven by a two-frequency ac driver.

IV. DISCUSSION

We chose the internal variableRstd to be the internal vari-
able for symmetry breaking in the DSG. We equally well
could have chosen the internal variable for symmetry break-
ing to beGstd. EitherRstd or Gstd or both will cause symme-
try breaking in the DSG, whereas in the SG case the only

FIG. 3. This figure demonstrates symmetry breaking—i.e., the
nonvanishing ofkPXstdl as a function ofu for various values of the
parametersv, e, andb. Solid curve:v=0.05,e1=e2=0.03, andb
=0 sthe curve is multiplied by 0.02d. Dashed curve:v=0.15, e1

=0.3, e2=e1/Î3, andb=0.2. Dotted curve:v=0.125,e1=0.16,e2

=e1/Î2, and b=0.15. Dash-dotted curve:v=0.05, e1=e2=0.05,
andb=0.12.

FIG. 4. kPXstdl as a function ofu for v=0.05,e1=e2=0.03 for
various values ofb shows a monotonic decrease of the amplitude of
kPstdl as the dampingb increases. Solid curve:b=0.02. Dashed
curve:b=0.05. Dotted curve:b=0.12.

FIG. 5. The energy current
PXstd and the distance between the
subkinks of the DSG,Rstd, for the
parametersb=0.1, e1=e2=0.2, u
=1.61−p, andv=0.12.
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internal variable possible isGstd. In all cases there can be no
symmetry breaking unless the phonon dressing caused by the
ac driver is included in the equations of motion. This can be
seen clearly in Eq.s24d where ifx=0 si.e., f =0d the equation
of motion for the energy current is

dPX

dt
+ bPX = 4pf1. s28d

The infinite time average of the energy current iskPXstdl
=0 and thus there is no directed energy current; i.e., time

inversion symmetry is not broken ifx=0. We showed in Ref.
f4g that if the dressingx vanished thenkPXstdl=0. Thus the
necessary condition for a directed energy in both the SG and
DSG equations is that the phonon dressingxstd be nonzero.

Recently, in Ref.f7g, a very different generalized double
sine-Gordon that has a spatially asymmetric potential, which
is driven by a single-frequency ac driver, was used to obtain
spatial ratchet behavior. Their spatial symmetry breaking
mechanism with a single-frequency ac driver is completely
different than our spatially symmetric DSG with a two-
frequency ac driver which violates time shift symmetry.

f1g S. Flach, Y. Zolotaryuk, A. E. Miroshnichenko, and M. V.
Fistul, Phys. Rev. Lett.88, 184101s2002d.

f2g O. Yevtushenko, S. Flach, Y. Zolotaryuk, and A. A. Ovchinni-
kov, Europhys. Lett.54, 141 s2001d.

f3g S. Flach, O. Yevtushenko, and Y. Zolotaryuk, Phys. Rev. Lett.
84, 2358s2000d.

f4g C. R. Willis and M. Farzaneh, Phys. Rev. E69, 056612

s2004d.
f5g C. R. Willis et al., Phys. Rev. B35, 3496s1987d.
f6g R. Boesch, P. Stancioff, and C. R. Willis, Phys. Rev. B38,

6713 s1998d, and references therein.
f7g M. Salerno and N. Quintero, Phys. Rev. E65, 025602R

s2002d.

FIG. 6. PXstd and Rstd for the
parametersb=0.2, e1=0.5, e2=1,
u=0, and v=0.15. Both curves
show the effect of two driving fre-
quencies. The time average of
Pstd is nonzero andRstd has a
two-frequency nonlinear oscilla-
tion about the minimum of the
asymmetric potential well.

DOUBLE SINE-GORDON RATCHET INDUCED BY… PHYSICAL REVIEW E 71, 016604s2005d

016604-5


